
Getting to know the Solaris
iSCSI stack
Ryan Matteson

matty91@gmail.com
http://prefetch.net

Presentation overview

• Tonight we are going to cover the iSCSI
protocol, and how to use the iSCSI
stack that comes with Solaris

• I plan to split my 60-minutes into two
parts. The first part will provide an
overview of the protocol, and the
second half will show how to use the
Solaris initiator and target

What is iSCSI?

• iSCSI is a protocol that allows SCSI
commands to be transmitted over a
TCP/IP network

• The protocol was published in draft form
by the IETF in 2001, and has since
been ratified and documented in RFC
3720

Why should I consider using
iSCSI?

• Reduce costs
– iSCSI uses TCP/IP, so low cost Ethernet adaptors

are all that are required to utilize the protocol (no
need to buy expensive FC HBAs)

– Ethernet switches can be used for both storage
and public network traffic (this reduces the need to
buy expensive fibre channel switches)

• Existing tools (e.g., wireshark, snoop) can be used to
debug storage problems (who has the money for
fibre channel analyzers?!?)

• Existing IP management and monitoring frameworks
can be used with iSCSI networks

Does Solaris support iSCSI?

• It sure does!!!!!
• Solaris 10 GA shipped with an iSCSI initiator that has

been certified by a number of tier one storage
vendors (and it has been improved in subsequent
Solaris 10 updates)

• Nevada (the development build leading up to the next
version of Solaris) contains an iSCSI target, which
will be available in the next Solaris 10 update (7/07?)

• An iSNS server is on the horizon, and should be
available in Nevada in the near future

Terminology

SCSI
• SCSI is a set of standards for connecting and

transferring data between computers and
peripherals*

• A SCSI initiator is the endpoint responsible for
initiating SCSI operations (i.e., the client)

• A SCSI target is the endpoint responsible for
processing SCSI commands from an initiator (i.e., the
server)

• SCSI Commands are sent between endpoints in
CDBs (command descriptor blocks)

* This definition comes from the fine folks at wikipedia.org

iSCSI

• iSCSI is a protocol for sending SCSI
commands over a TCP/IP network

• iSCSI, like SCSI, uses the term initiator to
describe the endpoint that initiates SCSI
operations (i.e. the client), and the term target
to describe the endpoint that accepts and
processes SCSI commands from one or more
initiators (i.e. the server)

iSCSI naming
• A device (e.g., server, appliance, etc.) capable of acting as an

iSCSI initiator or target is referred to as a network element
• Each network element can contain one or more iSCSI nodes

(e.g., initiators and targets), and each node is assigned a
unique iSCSI name

• iSCSI names can be in one of two formats: IQN or EUI
• IQN names contain a date string, the domain of a naming

authority, a unique string to identify the node, and are prefixed
by the string "iqn.”
– IQN address: iqn.1986-

03.com.sun:01:0003ba0e0795.4455571f
• EUI names consist of 16 hexadecimal digits prefixed by the

string "eui.” (EUI addresses resemble fibre channel WWNs)
– EUI address: eui.02004567A425678D

iSCSI portals
• All iSCSI network elements contain one or more portals,

which are the entry and exit points for iSCSI
communications

• Each portal consists of an IP address and TCP port
– The default port for iSCSI targets is 3260
– iSCSI initiators use ephemeral port ranges

• Portals can be grouped into portal groups to limit the set of
interfaces that are allowed to participate in iSCSI
communications, and to allow sessions to span portals

• NB: Portal addresses and iSCSI node names are not tied
together in any shape or form. This allows a portals
network address to change, while preserving the unique
node name.

iSCSI connections and
sessions

• iSCSI uses the TCP protocol to ensure reliable delivery of
data

• Initiators can create one or more TCP connections to a target
• Each TCP connection between an initiator and target is

associated with a “session,” which is used to link logical
connections together, and to ensure the ordered delivery of
SCSI commands

• Initiators can create one or more sessions to a target, and
each session can contain one or more TCP connections
(multiple connections per session is often abbreviated MC/S)

• iSCSI sessions are made unique on an initiator by combining
the node name with a unique initiator session ID (ISID), and
on the target by combing the node name with the target
session id (TSID)

iSCSI discovery methods

• Discovery allows an initiator to find one
or more targets and portals in a network

• Solaris supports three discovery
methods:
– Static discovery
– SendTargets
– iSNS

Piecing it all together
• The following diagram is an attempt to

visually represent the concepts discussed
above:

Using iSCSI

Configuring the iSCSI target
• The iSCSI target is configured with the iscsitadm utility, which

takes a command as it’s primary argument, a subcommand as
it’s secondary argument, and one or more options to control
what the command and subcommands are applied to

• The “-?” option can be used with iscsitadm to get context sensitive help:

 $ iscsitadm show stats -?
 iscsitadm show stats [OPTIONS] [<local-target>]
 OPTIONS:
 -v, --verbose
 -I, --interval <seconds>
 -N, --count <number>
 For more information, please see iscsitadm(1M)

Steps to configure the target

1. Create a base directory
2. Configure a backing store
3. Create a target
4. Optionally configure aliases, ACLs,

CHAP authentication and IPSEC
security associations

5. Verify the target configuration

Create the base directory

• The base directory is used to store the
iSCSI target configuration data, and
needs to be defined prior to using the
iSCSI target for the first time

• You can create a base directory with
the iscistadm utility:

 $ iscsitadm modify admin -d /etc/iscsitgt

Configure a backing store
• The backing store contains the physical storage that

is exported as a target
• The Solaris target supports several types of backing

stores:
– Flat files
– Physical devices
– SVM meta devices
– ZFS volumes (zvols for short)

• To create a backing store from a ZFS volume, the zfs
utility can be run with the create subcommand, the
create zvol option (“-V”), the size of the zvol to create,
and the name to associate with the zvol:

 $ zfs create -V 9g stripedpool/iscsivol000

Creating a target

• Once a backing store has been created,
it can be exported as an iSCSI target
with the iscsitadm "create" command,
the "target" subcommand, and by
specifying the backing store type to use:

 $ iscsitadm create target -b \
 /dev/zvol/dsk/stripedpool/iscsivol000
host1-tgt0

Add an ACL to a target
• Access control lists (ACLs) can be used to limit the node

names that are allowed to access a target
• To ease administration of ACLs, the target allows you to

associate an alias with a node name (you can retrieve the
node name of a Solaris initiator by running the iscsiadm
utility with the “list” command, and “initiator-node”
subcommand):

 $ iscsitadm create initiator -n iqn.1986- \
03.com.sun:01:0003ba0e0795.4455571f host1

• After an alias is created, it can be added to a target’s ACL
by passing the alias to the “target” subcommands “-l”
option:

 $ iscsitadm modify target -l host1 host1-tgt0

Verify the target configuration
• To verify the configuration of a target, iscsitadm can

be run with “list” command, the “target” subcommand
and optionally the “-v” (verbose output) option:

 $ iscsitadm list target -v
 Target: host1-tgt0
 iSCSI Name: iqn.1986-03.com.sun:02:cd7c60ee-f015-e2e2-d5e7-cf529127d20f.host1-tgt0
 Connections: 0
 ACL list:
 Initiator: iqn.1986-03.com.sun:01:0003ba0e0795.4455571f
 TPGT list:
 LUN information:
 LUN: 0
 GUID: 0
 VID: SUN
 PID: SOLARIS
 Type: disk
 Size: 9.0G
 Backing store: /dev/zvol/dsk/stripedpool/iscsivol000
 Status: online

Target demo

Configuring the Solaris
initiator

• The iSCSI initiator is configured with the iscsiadm utility, which
takes a command as it’s primary argument, a subcommand as
it’s secondary argument, and one or more options to control
what the command and subcommands are applied to

• The “-?” option can be used with iscsiadm to get context sensitive help:

 $ iscsiadm list target -?
 iscsiadm list target [OPTIONS] [<target-name ...>]
 OPTIONS:
 -v, --verbose
 -S, --scsi-target
 For more information, please see iscsiadm(1M)

Steps to configure the initiator

1. Configure a discovery method
2. Verify the targets
3. Initialize and use the new targets

Configuring a discovery
method

• The iscsiadm utility can be used to configure a
discovery method and the discovery parameters

• Configuring static discovery:
 $ scsiadm modify discovery --static enable
 $ iscsiadm add static-config iqn.1999-

08.com.array:sn.01234567,192.168.1.3:3260

• Configuring SendTargets discovery:
 $ iscsiadm modify discovery --sendtargets enable
 $ iscsiadm add discovery-address 192.168.1.13:3260

• Configuring iSNS discovery:
 $ iscsiadm modify discovery --isns enable
 $ iscsiadm add isns-server 192.168.1.13:3205

Verifying the targets

• Once a discovery method is configured, the
iscsiadm utility can be used to list the targets
that were discovered:

 $ iscsiadm list target -vS
 Target: iqn.1986-03.com.sun:02:cd7c60ee-f015-e2e2-d5e7-cf529127d20f.host1-tgt0
 Alias: host1-tgt0
 TPGT: 1
 ISID: 4000002a0000

 < ….. >

 LUN: 0
 Vendor: SUN Product: SOLARIS OS Device Name:
 /dev/rdsk/c1t010000CBC18475E900002A00457C908Ad0s2

Initialize and use targets
• Prior to using newly discovered targets, the devfsadm

utility needs to be run to create device entries:
 $ devfsadm -Cv -i iscsi

• Once the device nodes are created, the format utility
can be used to label the new targets, and your
favorite file system management tool (e.g., mkfs,
zpool, etc) can be used to convert the target(s) into
file systems:

 $ zpool create iscsipool c4t0100080020A76DF400002A00458BFE9Ad0

• NB: The LUN component of an iSCSI device contains
a GUID instead of a LUN id, which is comprised of
the Target Portal MAC address and a timestamp

Initiator demo

Security
• Since iSCSI transmits data over IP networks, it is
imperative to protect iSCSI traffic from
eavesdroppers

• This can be accomplished with a layered security
approach that includes one or more of the following:
– Dedicated storage networks
– Client ACLs
– Auditing
– IPSEC and header digests
– Port security on Ethernet switches

• Security is a whole presentation in and of itself.
Please see the references if you are interested in
learning more about iSCSI security

Performance
• iSCSI performance can be quite good, especially if you follow a

few basic rules
– Use Enterprise class NICs (they make a HUGE difference)
– Enable jumbo frames on storage ports
– Use layer-2 link aggregation and IPMP to boost throughput
– Ensure that you are using the performance guidance listed

in bug #6457694 on opensolaris.org
– Increase send and receive buffers, disable the nagle

algorithm and make sure TCP window scaling is working
correctly

• Ttcp and netperf are awesome tools for benchmarking network
throughput, and measuring the impact of a given network
tunable

• As with security, performance is a complete presentation in and
of itself. Please see the references if your interested in learning
more about tuning iSCSI communications for maximum
performance

Conclusion

• The opensolaris storage community is
leading the pack when it comes to
iSCSI

• All of the technology discussed in this
presentation is opensource, comes with
a $0 price tag, and can be downloaded
from opensolaris.org / sun.com

References
• Cuddletech (all things iSCSI)
 http://cuddletech.com
• iSCSI Dtrace scripts
 http://www.solarisinternals.com

• iSCSI multipathing
 http://www.sun.com/blueprints/1205/819-3730.pdf

• iSCSI Security
 http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-Dwivedi-update.pdf

• Opensolaris storage community
 http://opensolaris.org/os/community/storage/
• SNIA IP Storage White Paper
 http://www.snia.org/tech_activities/ip_storage/iSCSI_Technical_whitepaper.PDF
• T10 organization
 http://t10.org

Questions?

