Centralized Logging With syslog-ng

Ryan Matteson

matty9l@gmail.com
http://prefetch.net

e Tonight | am going to discuss centralized
logging and how syslog-ng can be used to
create a centralized logging infrastructure

* | am planning to split my presentation into
two parts:

— Part 1 will provide an overview of syslog-ng

— Part 2 will show how to configure syslog-ng to act
as a centralized logging server

* Centralized logging allows you to store your

Linux, UNIX and Windows logs in a centralized
repository

* Provides several benefits:

— Single location to check for system errors (ever
had a disk die that disrupted local logging?)

— Security, especially when you need to put together
timelines after a system compromise

— Often required for security compliance

* Syslog-ng is a flexible and robust open source syslog
implementation

 Provides numerous features:
— Logging via udp or tcp

— Mutual authentication through digital certificates
— Encryption of log traffic via TLS

— Filters can be used to sort traffic based on host, facility, log
level, message contents, etc.

— Messages can be parsed and rewritten (this is especially
useful for removing sensitive data from log messages)

— Logs can be sent to a SQL database

* Syslog-ng is configured through a single text file, which
contains one or more sections that describe where to
read log messages from, how to process them, and
where to send them after processing

e Sections are broken down into:
— Global options
— Filter statements
— Parser and rewrite statements
— Traffic sources
— Traffic destinations
— Log statement

* Global options allow you to control the global
behavior of syslog-ng

* Global options include:
— Entries to resolve hosts through DNS
— How many log entries to write(2) out at a time
— Permissions to assign to files

— Whether or not to preserve names when entries
are forwarded through another syslog process

* Global options are specified in an options block:

@version: 3.0

options {
flush_lines(100);
use_dns(no);
owner(root);
group(logs);
perm(0640);
dir_perm(0750);
dir_owner(root);
dir_group(logs);
create_dirs(yes);
stats_freq(3600);

* Syslog-ng uses traffic sources to define where
syslog-ng should read log messages from

* Several types of sources exist:
— internal — messages generated by syslog-ng

— file — contents of a file

— fifo — read from a named pipe
— program — execute program to get data
— tcp / udp - listen on a tcp or udp socket

— unix-dgram / unix-stream — listen for messages on a
UNIX domain socket

* Sources are created by adding a source statement along
with one or more configuration directives to a source block:

source local {

file ("/proc/kmsg" log_prefix("kernel: ")),
unix-stream ("/dev/log");
internal();

}I.

source network {
udp(ip(0.0.0.0) port(514));

}’.

Syslog-ng uses destinations to specify where log messages should be
written or forwarded to

Several types of destinations exist:
— file — write message to a file
fifo — write the message to a named pipe
program — Launches a program
sql — write the message to a SQL database
tcp / udp — forward the message to a remote server:port
unix-dgram / unix-stream — send the message to a UNIX domain socket
usertty — Send the message to a user’s tty
Several macros are available to allow flexible naming:
— SHOST contains the hosthame
— SSOURCEIP contains the SRC IP of the client who sent the message

— SMONTH, SDAY, SYEAR contain the date the message was created
— The syslog-ng manual contains the full list

* Destinations can be created by defining a
destination {} with a log destination, and
adding optional destination options:

destination d_unix_oom _msgs {
file("/log/unix/kernoom.$HOST.$YEAR.SMONTH.$DAY"
owner(matty) group(matty) perm(0600)
dir_owner(matty) dir _group(matty)
dir_ perm(0700)),

Filters allow you to route incoming messages to
destinations based on or more types of criteria
Criteria can be matched using one or more filter functions:
— facility — matches by the facility name
— level — matches by the log level
match — matches against a string in message and headers
message — matches a string against the message
host — match against the IP or hostname
netmask — match against an IP/netmask
Additional functions are listed in the syslog-ng manual
Complex filters can be created using POSIX and PCRE

regular expressions (*, #, [], etc.), as well as through the
use of one or more logical operators (or, and, not)

* The following filter looks for messages sent from
192.168.1.1 and 192.168.1.2 that are part of the kern
facility and contain the string “Out of Memory”:

filter f _ kern_oom {

((host("192.168.1.1") or
host("192.168.1.2")) and
facility(kern) and
level(debug...emerg) and
message("Out of Memory"));

* Log statements allow you to combine filters,
sources and destinations to control where

messages are sent:

log { source(network);
filter(f _kern _oom);
destination(d_unix_oom_msgs);

flags(final);

* Syslog-ng gathers statistics for each log
destination, and will write them out periodically
(the interval is controlled by the stats(time
interval) directive) to the system logs:

Oct 3 14:40:07 local@foo syslog-ng[1234]: \

Log statistics; processed="'center(queued)=24169972', \
processed="center(received)=24170053", \
processed="destination(linux)=1235", \
processed="source(local)=253", \
processed="source(network)=24169800'

 |f a filter isn’t working the way you expect it
to, you can run syslog-ng with the “-d” (debug)
and “-e” (log to stdout) options to observe

rule processing:
S syslog-ng —e —d > /var/tmp/syslog.out 2>&1

S less /var/tmp/syslog.out

* Syslog-ng offers a flexible and easy way to
configure centralized logging solution

When combined with tools such as logwatch

and swatch, you will be able to understand
exactly what is going on with your servers, and
will have one place to look when things go
wrong

* Syslog-ng website:

http://www.balabit.com/network-security/syslog-ng/

* Syslog-ng manual:
http://www.balabit.com/dl/guides/syslog-ng-v3.0-guide-admin-en.pdf

