Linux Device Management:
Getting to know udev

Ryan Matteson
matty9l@gmail.com
http://prefetch.net



* Tonight | am going to discuss udev, and show
now this amazing technology can be used to
nandle all of your device management needs

am planning to split my presentation into two
parts:
— Part 1 will provide an overview of udev

— Part 2 will show how to use udev to configure a USB
storage device that is hot plugged into my laptop




e Udev is a device management framework that
replaced the devfs facility in the Linux 2.6 kernel

* Provides a number of features:

— Dynamic creation of nodes in /dev

— Persistent naming of devices (has anyone had sda
become sdb after a reboot?)

— Provides a flexible rule engine that can be used to
control every facet (device name, owner, group,
permissions, etc.) of the device creation process

— Allows arbitrary programs to be run when devices are
added and removed from a system




* When the kernel detects that a device has
been added or removed, a uevent is sent to
the udevd daemon through a netlink socket

When udevd receives the uevent, it matches
its configured rules against the available
device attributes provided in sysfs

If a match is found, one or more actions (e.g.,
create device node, remove device node,
install firmware, etc.) are taken




* Udev rules are added to files in /etc/udev/
rules.d, and take the following form:

MATCH_KEY(S) ASSIGNMENT(S)

* MATCH_KEY takes the form of one or more
key/value match statements, and the
ASSIGNMENT equates to one or more actions
to perform when a match occurs




* Match keys can include a number of items:

— Kernel subsystem the device is part of (KERNEL)
— Driver type (DRIVER)
— One or more sysfs attributes (ATTRS)

— Numerous more (udev(7) lists them all) ...

e Regular expressions (*, ?, [0-9], etc.) can be
used as part of the match expression, and
match results are provided to the rule in the
form of one or more % variables




* To get a listing of sysfs attributes for a given device, you
can run the udevinfo utility:

S udevinfo -a -p /block/sdb
KERNELS=="1-2"
SUBSYSTEMS=="usb"
DRIVERS=="usb"

ATTRS{serial}=="35A3FB10074017271004"

* These attributes can be used as part of your matching
criteria




 After a match is made, one or more actions can
be invoked:

— Set the device name (NAME)
— Create a symbolic link to the device (SYMLINK)
— Change the owner of the device (OWNER)

— Change the permissions of the device (MODE)
— Numerous more (udev(7) lists them all) ...

e The PROGRAM action allows you to run arbitrary
programs during rule processing, and the output
from this program is available for matching via
the RESULT key




 Example: Say we have a USB key drive that we
want to mount at /dev/usbdrivel

* We can add a rule similar to the following

to /etc/udev/rules.d/s10-usbdrive.rules:

SUBSYSTEM=="block", SUBSYSTEMS=="usb", \
ATTRS{serial}=="35A3FB10074017271004", \
NAME="usbdrivel", OWNER="matty", \
MODE="0600"




* Using the previous example, the rule will apply
the following logic:
— |Is the device in the block subsystem?
— Is the device a child of the usb driver?

— Does the device serial number (as acquired from the
sysfs file system) equal 35A3FB100740172710047

 |f the three rules match, a device node named /
dev/usbdiskl with an owner of matty and the
permission 0600 will be created in /dev




* Once you create a new udev rule, you can use the
udevtest utility to verify that your rule works:

S udevtest /block/sdb
main: looking at device '/block/sdb' from subsystem 'block'

udev _rules_apply to event: OWNER 501 \

/etc/udev/rules.d/ S10-usbdrive.rules:1
udev_rules_apply to _event: MODE 0600 \

/etc/udev/rules.d/S10-usbdrive.rules:1
udev _rules_apply to _event: NAME 'usbdisk1' \

/etc/udev/rules.d/S10-usbdrive.rules:1

* The program takes the sysfs device node as an
argument, and prints the rules that would be applied

to the device




* You can observe the uevents passed between the kernel and
udevd with the udevmonitor utility:

S udevmonitor

monitor will print the received events for:

UDEV - the event which udev sends out after rule processing

KERNEL - the kernel uevent

KERNEL[1253142121.510109] add \
/devices/pci0000:00/0000:00:02.1/usb1/1-2 (usb)

KERNEL[1253142121.511227] add \
/devices/pci0000:00/0000:00:02.1/usb1/1-2/1-2:1.0 (usb)

UDEV [1253142121.521639] add \
/devices/pci0000:00/0000:00:02.1/usb1/1-2 (usb)

UDEV [1253142121.528646] add \
/devices/pci0000:00/0000:00:02.1/usb1/1-2/usb_endpoint/ \
usbdevl.2_ep00 (usb_endpoint)




* If your devices aren’t being created, there is a
three step process you can use to find out why:

— Run udevtest to see howyour rule is interpreted
— Use udevmonitor to observe the uevents

— Enable debug logging with udevcontrol

* If that fails, you can ‘yumdownloader —source
udev’ and dig through the callout programs and
udevd source to see how a given rule should be
handled (this is a last resort, as the steps above
should identify the issue)




 The udev device management framework is
extremely powerful, and allows you to control
every facet of how device nodes are created

To learn about some of udev’s advanced
capabilities (e.g., using regular expressions,
running custom scripts, etc.), please check out
the udev(7) manual page and the
documentation in the kernel source code







Persistent device naming in userspace
http://www.linuxjournal.com/article/7316

Devfs vs. udev write up:
http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev_vs_devfs
Udev(7) manual page:

http://linux.die.net/man/7/udev

Writing udev rules:
http://www.reactivated.net/writing_udev_rules.html




