DTrace for SysAdmins
An introduction to the
DTraceToolkit

Ryan Matteson

matty91@gmail.com
http://prefetch.net

What is the DTraceToolkit?

» Collection of DTrace scripts written by
Brendan Gregg to observe system and
application behavior

* Over 105 scripts are currently available
to observe CPU, memory, I/O, process
scheduling, network activity, userland
applications and much much more ...

How is the toolkit organized?

* The toolkit is arranged as a series of
directories, with each directory containing
scripts to observe a specific subsystem (e.g.,
virtual memory)

« The "Bin” directory contains symbolic links to
all of the scripts in the toolkit

* The "Docs” directory contains documentation,
and a description of each script

Where can | grab the toolkit™?

* The latest version can be retrieved from
brendangregg.com, or the opensolaris.org
DTrace community website

* The following alias is useful for retrieving and

installing the latest version of the toolkit:

alias grabtoolkit="cd /opt && /usr/sfw/bin/wget -q -O -\

http://www.brendangregg.com/DTraceToolkit-latest.tar.gz \ |
lusr/sfw/bin/gtar xz”

Monitoring CPU activity

 The DTraceToolkit comes with several
scripts to monitor interrupts, scheduling
behavior, context switching and CPU
utilization

 All of the scripts related to the CPU are
stored in the “Cpu” directory

Observing the CPU dispatcher

 The CPU dispatcher maintains one or more
queues of “runnable” processes, and
schedules these onto available CPU
resources

* The dispglen.d script can be used to measure
the number of “runnable” processes in each

queue.
$ dispqglen.d
Sampling... Hit Ctrl-C to end.
CPUO
value ----------—--- Distribution ------------- count
S | 0

Measuring CPU utilization

* The cputimes scripts can be used to measure
how much CPU time is being consumed by

each process:

$ cputimes -a 5

2006 Sep 10 20:16:22,
THREADS TIME (ns)

fmd 125016
se.i386 127911
dtrace 2088111
fsflush 10904127
KERNEL 27022234
orca 4932396085

IDLE 14861393273

Monitoring virtual memory

 The DTraceToolkit comes with several
scripts to monitor virtual memory usage

* There are also several scripts available
to view and report on swap utilization

 All of the scripts related to virtual
memory and swap are located in the
“Mem” directory

Monitoring paging activity

« The vmstat “-p” option provides system wide
paging activity, but there are times when you
want to see how a specific process is
impacting the virtual memory subsystem

» dvmstat can be used to retrieve paging
activity for all processed with a specific name,

or for a process with a specific process id:

$ dvmstat -n bash
re maj mf fr epi epo api apo fpi fpo sy
584 0 4496 0 O O 0 0 0 0 577
72 03272 0 0 0 O O 0 O 1396

Monitoring network activity

 The DTraceToolkit comes with several
scripts to monitor the TCP/IP and
UDP/IP stacks

* There are also scripts to monitor HT TP
requests and NFS activity

* These scripts are located in the “Net”
and “Apps” directories

Monitoring TCP connections

The connections script can be used to watch
active connections on a system

To view connection data in a “top”-like
display, the tcptop script can be used

To display TCP connections, the tcpsnoop
script can be used

To display UDP connections, the udpsnoop.d
script can be used

Due to Solaris bug #6315039, these scripts
are currently broken in GA releases of Solaris
(the bug is fixed in opensolaris)

Monitoring NFS client
operations

* Monitoring NFSv3 client behavior prior to
Solaris 10 was a chore (e.g., correlating truss,
snoop and nfsstat was a nightmare!)

| wrote the nfsclientstats.pl* to assist with
correlating NFSv3 file system operations (also
referred to as VOPs) to processes:

$ nfsclientstats.pl
process read write readdir getattr setattr lookup access create remove

rename mkdir orca 3328 194 0 5496 6 6882 8246 12
0 O 0 O

rm 0 0 760 950 0 2850 5320 O 190 0 O
190

touch 0 0 0O 378 189 1512 1323 189 0 0O O

0

Tracing NFS operations

* Monitoring physical vs. logical NFS I/O was also
a chore prior to Solaris 10 (anyone remember
prex?)

* To determine how often an NFS operation
caused a physical network 1/O to occur, and to
measure the latecy of each operation, |
developed the nfstrace script:

$ nfstrace

Executable Operation Type Time Size Path

mkdir nfs3 lookup physical 359953 N/A /opt/htdocs/test
mkdir nfs3 getattr logical 17481 N/A /opt/htdocs/test
mkdir nfs3 getattr logical 7577 N/A /opt/htdocs/test
cat nfs3 read logical 54848 8192 /opt/htdocs/test/1

* Script available at http://prefetch.net

Monitoring disk Activity

« The DTraceToolkit comes with several
scripts to view physical and logical |/O

* There are also several scripts to profile
application |/O behavior

« Scripts related to I/O are located in the
“Disk™ directory

Monitoring physical 1/0O

* The iotop utility can be used to view physical
/O in a “top”-like display

 |t's counterpart, iosnoop, can be used to
display block I/O as it happens:

$ iosnoop

DEVICE UID PIDD BLOCK SIZE COMM PATHNAME
cmdkO 100 3154 R 81824 3072 cat /etc/default/nfs
cmdkO 100 3162 R 1050110 1024 s /etc/aliases

cmdkO 100 3242 R 1050634 2048 cat
/etc/default/inetinit

cmdkO 0 3 W 36726 1024 fsflush /var/cron/log

Monitoring logical 1/O

* The rwtop utility can be used to view logical
/O in a “top”-like display:

 |t's counterpart, rwsnoop, can be used to
display logical I/O as it happens:

$ rwsnoop

UID PID CMD D BYTES FILE

0 4536 more W 41 /devices/pseudo/pts@0:1

100 2958 sshd R 42 /devices/pseudo/clone@O0:ptm
0O 540 orca W 8192 /opt/data/foo1

O 540 orca W 8192 /opt/data/foo2

0O 540 orca W 8192 /opt/data/foo3

Measuring application |/O
patterns

 |opattern can be used to measure sequential
and random |/O system wide (useful for
tailoring file systems to suit specific workloads)

» seeksize.d can be used to determine if an
individual process is performing sequential or
random 1I/O

 bitesize.d can be used to measure the quantity
and size of each I/O performed by an
application

Measuring I/O wait

* The iopending and iofile.d scripts can be used
to measure how much time an application
spends waiting for 1/O:

$ iofile.d

Tracing... Hit Ctrl-C to end.

PID CMD TIME FILE

3442 cron 13995 /var/adm/lastlog
3442 cron 14374 /etc/default/login
3451 cron 16979 /var/adm/lastlog
255 cron 17310 /var/cron/log

386 syslogd 22261 /var/adm/messages
3456 sadc 24078 /var/adm/sa/sa10

3456 sadc 26327 /var/fadm/sa/

Monitoring processes

 The DTraceToolkit comes with several
scripts to observe processes and profile
applications

* These scripts are located in the “Procs,”
“Apps,” “Users” and “System”
directories

Monitoring calls to exec*()

* The execsnoop script can be used to
watch calls to the exec() family of
functions:

$ execsnoop
UID PID PPID ARGS
0 4676 3273 Is -l
0 4677 3273 ps -ef
0 4677 3273 ps -ef
0 4678 3273 cat/etc/system

Monitoring calls to open™()

* The opensnhoop script can be used to
capture calls to the open() family of
functions:
$ opensnoop
UiD PID COMM FD PATH

O 540 topen 69 /opt/data/foo1
O 540 topen 69 /opt/data/foo2
O 540 topen 69 /opt/data/foo3
O 540 topen 69 /opt/data/foo4d

Miscellaneous process scripts

newproc.d can be used to watch
processes as they are created

errinfo can be used to watch errno
values as they are generated

procsystime can be used to determine
how much CPU time is spent in each
system call

dapptrace and dappprof can be used to
profile applications

Conclusion

e DTrace is an invaluable addition to Solaris

* There are over a hundred extremely useful
scripts that can be used to derive useful
debugging and profiling data

 The DTraceToolkit allows system
adminisatrators to solve real problems without
needing to crack open the Dtrace users
guide, Solaris Systems Programming or
Solaris Kernel Internals

References

Dtrace users guide

— http://www.opensolaris.org/os/community/dtrace/
DTraceToolkit website

— http://brendangregg.com

Top Ten Dtrace scripts

— http://prefetch.net

Observing I/0O behavior with the DTraceToolkit

— http://prefetch.net

Understanding vmstat and mpstat output with Dtrace
— http://prefetch.net

Questions?

