
Apache internals and
debugging
Ryan Matteson

matty91@gmail.com
http://prefetch.net

Presentation overview

• An introduction to the Apache source code
layout

• An introduction to key concepts such as
modules, buckets, brigades, hooks, filters,
and MPMs

• An introduction to several tools that can be
used to perform post-mortem analysis

• An introduction to several tools that can be
used to debug transient server problems

Apache layout

What is Apache?

• Flexible and extensible opensource web
server

• Supports HTTP versions 0.9, 1.0 and 1.1
• Ships with a variety of modules that can be

used to secure communications and
transform content

• Supports virtual hosting
• Supports static and dynamic content delivery
• The list goes on and on …

How big is Apache?

• 150k+ lines of C code*:
 $ find . -name *.c -exec egrep -v '(^[]+*|^$|\/*|*\/) {} \; | wc -l
 155884

• 480+ source code files:
$ find . -name *.c -ls | wc -l

 488

• 240+ header files:
 $ find . -name *.h -ls | wc -l
 247

* Several source code files are used for experimentation, testing, and debugging purposes

How is Apache organized?

• Apache is broken up into several pieces
– The server core
– The Apache portable runtime
– The Apache portable runtime utilities
– Support infrastructure
– Numerous modules

How is the Apache source
code organized?

• The server core source code resides in
$SRCROOT/server

• The server core header files reside in
$SRCROOT/include

• The portable runtime resides in
$SRCROOT/srclib/apr

• The portable runtime utilities reside in
$SRCROOT/srclib/apr-util

• Support infrastructure resides in $SRCROOT/support
• Modules reside in $SRCROOT/modules

Apache terminology

Resource pools

• Pools are used to simplify memory
management

• Pools are created and destroyed
automatically by the server core

• Pools have a lifetime associated with them
(e.g, a request pool is created when a request
arrives, and destroyed after the request is
processed)

• apr_pools.h provides a thorough description
of the pool API and the underlying allocator

Multi-processing modules
(MPMs)

• MPMs are responsible for accepting network
requests and dispatching those requests to
children (processes or threads)

• Two main MPMs in use today
– Prefork MPM utilizes processes to handle requests
– Worker MPM utilizes a threaded multi-process model

process requests
• mpm_common.h, prefork.c and worker.c

contain the MPM, prefork and worker MPM
implementations

Modules and hooks

• Apache uses modules to isolate functionality
and to extend the core servers capabilities

• Modules utilize hooks and filters to tie into the
request processing flow

• The SHOW_HOOKS environment variable
can be used to watch hook processing order
 $ export SHOW_HOOKS=1 && httpd -X
 Registering hooks for core.c
 Hooked create_connection
 Hooked pre_connection
 …

Buckets and brigades

• Buckets are abstractions used by Apache to
store data as it’s read from or written to the
network

• Bucket API provides a rich set of functions to
modify bucket contents

• Brigades are chains of buckets used to
efficiently pass data between filters

• Brigade API provides a rich set of functions to
modify the members in a brigade

• apr_buckets.h provides a thorough
description of buckets and brigades

Filters

• Filters are used to read and transform data as
it’s read from and written to the network

• Filter chains are used to allow the output from
one filter to become the input to another filter

• Two type of filters
– Input filters (e.g., mod_deflate, mod_ssl)
– Output filters (e.g., mod_ssl, mod_headers)

• util_filter.h provides a thorough description of
input and output filter chains

Debugging

Why debug?

• Because software breaks
• Because administrators get frustrated

with messages similar to the following:
 [Sat Feb 04 13:00:27 2006] [notice] child pid

8581 exit signal Segmentation fault (11),
possible coredump in /var/tmp/apache2

• And most importantly, because
debugging can be fun and rewarding

Types of debugging

• Post-mortem debugging
• Transient problem debugging
• Reverse engineering

Postmortem debugging

What is post-mortem
debugging?

• Post-mortem debugging is the art of finding
out why a system failed given a set of
determinants (e.g., core file, audit trail, logfile
messages)

• Software post-mortem analysis typically relies
on custom instrumented binaries, logfile
messages, and core file analysis

• Several tools can help with performing
Apache post-mortem analysis
– Apache maintainer mode
– mod_backtrace
– GDB and the Apache GDB macros

Maintainer mode

• Builds Apache with debugging support
and custom instrumentation

• Enabled at configure time

$./configure --enable-maintainer-mode \
 --enable-exception-hook \
 --enable-mods-shared=most \
 --enable-deflate=shared \
 --prefix=/opt/apache2

mod_backtrace

• Writes a stack trace to a logfile each time a
critical signal (e.g., SIGSEGV) is received

• Utilizes the Apache exception hook
• Can help with diagnosing problems on

platforms that don’t reliably create core files
• Supports Linux and FreeBSD
• Solaris patch available on my website

Building and installing
mod_backtrace

• Enable exception hook
 $./configure --enable-exception-hook …

• Compile mod_backtrace module
 $ apxs -ci mod_backtrace.c

• Enable module
 LoadModule backtrace_module modules/mod_backtrace.so
 EnableExceptionHook On

Watch Apache go splat

• Check the error_log when Apache
misbehaves

 $ kill -SIGSEGV `pgrep httpd | tail -1`

 $ tail -100 error_log
 [Sat Feb 4 20:36:05 2006] pid 23514 mod_backtrace backtrace for sig 11 (thread "pid" 23514)
 [Sat Feb 4 20:36:05 2006] pid 23514 mod_backtrace main() is at 326b0
 /var/tmp/apache2/modules/mod_backtrace.so:bt_exception_hook+0x108
 /var/tmp/apache2/bin/httpd:ap_run_fatal_exception+0x34
 /var/tmp/apache2/bin/httpd:0x2a09c
 /lib/libc.so.1:0xbfec8
 /lib/libc.so.1:0xb4ff4
 /lib/libc.so.1:_so_accept+0x8 [Signal 11 (SEGV)]
 /var/tmp/apache2/bin/httpd:unixd_accept+0x10
 /var/tmp/apache2/bin/httpd:0x1c2ac
 /var/tmp/apache2/bin/httpd:0x1c574
 /var/tmp/apache2/bin/httpd:0x1c644
 /var/tmp/apache2/bin/httpd:ap_mpm_run+0x76c
 /var/tmp/apache2/bin/httpd:main+0x63c
 /var/tmp/apache2/bin/httpd:_start+0x5c
 [Sat Feb 4 20:36:05 2006] pid 23514 mod_backtrace end of backtrace

GDB macros

• Apache comes with numerous GDB
macros to print brigades, buckets,
strings, filters, memnodes, tables, and
process and server records

• Macros are located in
$SRCROOT/.gdbinit

• Can be sourced using the gdb “source”
command

Using GDB macros
$ httpd -X

$ gdb -q /usr/apache2/bin/httpd

(gdb) source apachemacros

(gdb) show user
 User command dump_bucket:
 dump_bucket_ex $arg0 0
 ...

(gdb) info function ap_pass_brigade
All functions matching regular expression "ap_pass_brigade":

File util_filter.c:
apr_status_t ap_pass_brigade(ap_filter_t *, apr_bucket_brigade *);

(gdb) break ap_pass_brigade

Using GDB macros (cont.)
(gdb) attach 975

(gdb) continue

(gdb) backtrace 4
#0 ap_pass_brigade (next=0x129d18, bb=0x139168) at util_filter.c:489
#1 0x000291d4 in ap_http_header_filter (f=0x138568, b=0x139168) at http_protocol.c:1766
#2 0x0003ad5c in ap_pass_brigade (next=0x138568, bb=0x139168) at util_filter.c:512
#3 0x0003d444 in ap_content_length_filter (f=0x138550, b=0x139168) at protocol.c:1248

(gdb) next

(gdb) dump_brigade bb
dump of brigade 0x139168
 | type (address) | length | data addr | contents | rc
--
 0 | FILE (0x0012d918) | 2326 | 0x0012da58 | [**unprintable**] | 1
 1 | EOS (0x0012daa8) | 0 | 0x00000000 | | n/a
end of brigade

(gdb) detach

Debugging transient problems

What is transient debugging?

• Transient debugging is the art of correlating
unacceptable behaviors to specific application
and system components

• Several utilities can help with debugging
transient problems:
– Chaosreader
– Curl
– Dtrace
– Ethereal
– Firefox HTTP Live Headers

Curl

• Versatile command line utility that can
be used to debug web-based problems

• Curl contains several advanced options
to print protocol headers and
connection errors

• Invaluable utility for locating
misbehaving servers and applications

Curl example
$ curl -v --user-agent "CURL DEBUG (`date`)" -H "X-foo: yikes"

http://daemons.net
 About to connect() to daemons.net port 80
 Trying 66.148.84.65... * connected
 Connected to daemons.net (66.148.84.65) port 80
 > GET / HTTP/1.1
 User-Agent: CURL DEBUG (Sat Feb 4 23:02:36 EST 2006)
 Host: daemons.net
 Pragma: no-cache
 Accept: */*
 X-foo: yikes

 < HTTP/1.1 200 OK
 < Date: Sun, 05 Feb 2006 04:04:13 GMT
 < Server: Apache
 < Last-Modified: Sun, 20 Jun 2004 14:39:21 GMT
 < ETag: "5c186-912-c108d840"
 < Accept-Ranges: bytes
 < Content-Length: 2322
 < Content-Type: text/html
 …

DTrace

• Dynamic tracing facility introduced in Solaris
10

• Can dynamically instrument applications and
the Solaris kernel down to the instruction level

• Utilizes 30k+ probes distributed throughout
the Solaris kernel

• Designed to be used on production systems
• No overhead when probes aren’t enabled

Dtrace script organization

• Dtrace scripts contain one or more
probes, an optional predicate, and an
optional action to perform (the default
action is trace()):

 provider:module:function:name
 / predicate /

 {
 action();
 }

Dtrace example #1

• Viewing system calls by Apache
process

 $ dtrace -n 'syscall:::entry
 /execname == "httpd"/
 {
 @calls[probefunc] = count();
 }'

Dtrace example #2

• Determining WHO called writev
 $ dtrace -n 'syscall::writev:entry
 / execname == "httpd" /
 {
 ustack();
 }'

Dtrace example #3

• Tracing execution flow per request
 #pragma D option flowindent
 pid$target::ap_process_request:entry
 {
 self->trace = 1;
 }
 pid$target::ap_process_request:return
 {
 self->trace = 0;
 }
 pid$target:::entry,
 pid$target:::return
 / self->trace /
 {}

Dtrace example #4

• Tracing execution flow into the kernel
 #pragma D option flowindent
 pid$target::ap_read_request:entry
 {
 self->trace = 1;
 }
 pid$target::ap_read_request:return
 {
 self->trace = 0;
 }
 pid$target:::entry,
 pid$target:::return,
 fbt:::entry,
 fbt:::return
 / self->trace /
 {}

Dtrace example #5

• Watching Logical Apache I/O operations
 syscall::write:entry
 / execname == "httpd" /
 {
 printf("Apache wrote (%s) to fd %d (%s\n", probefunc, arg0,

fds[arg0].fi_pathname);
 }

 syscall::read:entry
 / execname == "httpd" /
 {
 printf("Apache read (%s) from fd %d (%s)\n", probefunc, arg0,

fds[arg0].fi_pathname);
 }

Dtrace example #6

• Measuring write size
 $ dtrace -n 'syscall::read:return
 / execname == "httpd" && errno == 0 /
 {
 @distribution["Average read size"] = quantize(arg1);
 }'

Dtrace example #7

• Measuring request processing time
 pid$target::ap_read_request:entry
 {
 self->ts = timestamp;
 }
 pid$target::ap_read_request:return
 {
 self->method = arg1 == 0 ? "Unknown" : copyinstr(*(uintptr_t *)copyin(arg1 +

68,4));
 self->uuri = arg1 == 0 ? "Unknown" : copyinstr(*(uintptr_t *)copyin(arg1 +

200,4));
 }
 pid$target::ap_process_request:return
 {
 printf("Processed %s %s in %d microseconds\n", self->method, self->uuri,
 (timestamp - self->ts) / 1000000);
 self->uuri = 0; self->ts = 0;
 }

Conclusion

• Debugging is cool!
• Debugging is great!
• Now it’s time for me to escape! :-)

Questions?

References
• Apache: http://apache.org
• Chaosreader:

http://users.tpg.com.au/bdgcvb/chaosreader.html
• Curl: http://curl.haxx.se/
• Dtrace: http://opensolaris.org/os/community/dtrace/
• Debugging Web Applications:

http://www.samag.com/articles/2006/0603/
• Ethereal: http://www.ethereal.com/
• mod_backtrace:

http://people.apache.org/~trawick/exception_hook.htm
• Observing I/O Behavior with the DTraceToolkit:

http://www.samag.com/documents/s=9915/sam0512a/051
2a.htm

