Apache internals and
debugging

Ryan Matteson
matty91@gmail.com
http://prefetch.net

Presentation overview

An introduction to the Apache source code
layout

An introduction to key concepts such as
modules, buckets, brigades, hooks, filters,
and MPMs

An introduction to several tools that can be
used to perform post-mortem analysis

An introduction to several tools that can be
used to debug transient server problems

Apache layout

What is Apache?

Flexible and extensible opensource web
server

Supports HTTP versions 0.9, 1.0 and 1.1

Ships with a variety of modules that can be
used to secure communications and
transform content

Supports virtual hosting
Supports static and dynamic content delivery
The list goes on and on ...

How big is Apache?

« 150k+ lines of C code™:
$ find . -name *.c -exec egrep -v (N J+\|"$|V**V) {} \; | we -/
155884

e 480+ source code files:
$ find . -name *.c -Is | wc -I
488

o 240+ header files:

$ find . -name *.h -Is | wc -I
247

* Several source code files are used for experimentation, testing, and debugging purposes

How is Apache organized?

* Apache is broken up into several pieces
— The server core
— The Apache portable runtime
— The Apache portable runtime utilities
— Support infrastructure
— Numerous modules

How Is the Apache source
code organized?

The server core source code resides in
$SRCROOT/server

The server core header files reside in
$SRCROOT/include

The portable runtime resides in
$SRCROOT/srclib/apr

The portable runtime utilities reside in
$SRCROQOT/srclib/apr-util

Support infrastructure resides in $SRCROOT/support
Modules reside in $SRCROOT/modules

Apache terminology

Resource pools

Pools are used to simplify memory
management

Pools are created and destroyed
automatically by the server core

Pools have a lifetime associated with them
(e.g, a request pool is created when a request
arrives, and destroyed after the request is
processed)

apr_pools.h provides a thorough description
of the pool API and the underlying allocator

Multi-processing modules
(MPMs)

« MPMs are responsible for accepting network
requests and dispatching those requests to
children (processes or threads)

 Two main MPMs in use today
— Prefork MPM utilizes processes to handle requests
— Worker MPM utilizes a threaded multi-process model
Process requests
« mpm_common.h, prefork.c and worker.c
contain the MPM, prefork and worker MPM

implementations

Modules and hooks

« Apache uses modules to isolate functionality
and to extend the core servers capabilities

 Modules utilize hooks and filters to tie into the
request processing flow

« The SHOW_ HOOKS environment variable
can be used to watch hook processing order

$ export SHOW_HOOKS=1 && httpd -X
Registering hooks for core.c
Hooked create_connection
Hooked pre connection

Buckets and brigades

Buckets are abstractions used by Apache to
store data as it’'s read from or written to the
network

Bucket API provides a rich set of functions to
modify bucket contents

Brigades are chains of buckets used to
efficiently pass data between filters

Brigade API provides a rich set of functions to
modify the members in a brigade

apr_buckets.h provides a thorough
description of buckets and brigades

Filters

Filters are used to read and transform data as
it's read from and written to the network

Filter chains are used to allow the output from
one filter to become the input to another filter
Two type of filters

— Input filters (e.g., mod_deflate, mod_ssl)

— Output filters (e.g., mod_ssl, mod_headers)

util_filter.h provides a thorough description of
input and output filter chains

Debugging

Why debug?

« Because software breaks

» Because administrators get frustrated
with messages similar to the following:

[Sat Feb 04 13:00:27 2006] [notice] child pid
85681 exit signal Segmentation fault (11),
possible coredump in /var/tmp/apacheZ2

* And most importantly, because
debugging can be fun and rewarding

Types of debugging

* Post-mortem debugging
* Transient problem debugging
* Reverse engineering

Postmortem debugging

What is post-mortem
debugging?

« Post-mortem debugging is the art of finding
out why a system failed given a set of
determinants (e.g., core file, audit trail, logfile
messages)

« Software post-mortem analysis typically relies

on custom instrumented binaries, logfile
messages, and core file analysis

« Several tools can help with performing
Apache post-mortem analysis
— Apache maintainer mode
— mod_backtrace
— GDB and the Apache GDB macros

Maintainer mode

* Builds Apache with debugging support
and custom instrumentation

 Enabled

$./configure

at configure time

--enable-maintainer-mode \
--enable-exception-hook \
--enable-mods-shared=most \
--enable-deflate=shared \
--prefix=/opt/apache?2

mod backtrace

Writes a stack trace to a logfile each time a
critical signal (e.g., SIGSEGV) is received

Utilizes the Apache exception hook

Can help with diagnosing problems on
platforms that don't reliably create core files

Supports Linux and FreeBSD
Solaris patch available on my website

Building and installing
mod backtrace

 Enable exception hook

$./configure --enable-exception-hook ...

 Compile mod backtrace module

$ apxs -ci mod_backtrace.c

 Enable module

LoadModule backtrace _module modules/mod_backtrace.so
EnableExceptionHook On

Watch Apache go splat

* Check the error_log when Apache
misbehaves

$ kill -SIGSEGV "pgrep httpd | tail -1

$ tail -100 error_log

[Sat Feb 4 20:36:05 2006] pid 23514 mod_backtrace backtrace for sig 11 (thread "pid" 23514)
[Sat Feb 4 20:36:05 2006] pid 23514 mod_backtrace main() is at 326b0
/var/tmp/apache2/modules/mod_backtrace.so:bt_exception_hook+0x108
/var/tmp/apache2/bin/httpd:ap_run_fatal_exception+0x34
/var/tmp/apache2/bin/httpd:0x2a09c

/lib/libc.s0.1:0xbfec8

/lib/libc.s0.1:0xb4ff4

/lib/libc.so0.1:_so_accept+0x8 [Signal 11 (SEGV)]
/var/tmp/apache2/bin/httpd:unixd_accept+0x10
/var/tmp/apache2/bin/httpd:0x1c2ac

/var/tmp/apache2/bin/httpd:0x1c574

/var/tmp/apache2/bin/httpd:0x1c644
/var/tmp/apache2/bin/httpd:ap_mpm_run+0x76¢
/var/tmp/apache2/bin/httpd:main+0x63c
Ivar/tmp/apache2/bin/httpd:_start+0x5c

MO Lt Mol A NN.DP.NANEC NDNNPT 2l DNOFCA A eaadl hcalbvee o el af e Al o

GDB macros

Apache comes with numerous GDB
macros to print brigades, buckets,
strings, filters, memnodes, tables, and
process and server records

Macros are located In
$SRCROOT/.gdbinit

Can be sourced using the gdb “source”
command

Using GDB macros

$ httpd -X

$ gdb -q /usr/apache2/bin/httpd
(gdb) source apachemacros
(gdb) show user

User command dump_bucket:
dump_bucket_ex $arg0 0

(gdb) info function ap_pass_brigade
All functions matching regular expression "ap_pass_brigade":

File util_filter.c:
apr_status_t ap_pass_brigade(ap_filter t *, apr_bucket_brigade *);

(gdb) break ap_pass_brigade

Using GDB macros (cont.)

(gdb) attach 975
(gdb) continue

(gdb) backtrace 4

#0 ap_pass_brigade (next=0x129d18, bb=0x139168) at util_filter.c:489

#1 0x000291d4 in ap_http_header _filter (f=0x138568, b=0x139168) at http_protocol.c:1766
#2 0x0003adb5c in ap_pass_brigade (next=0x138568, bb=0x139168) at util_filter.c:512

#3 0x0003d444 in ap_content_length_filter (f=0x138550, b=0x139168) at protocol.c:1248

(gdb) next
(gdb) dump_brigade bb

dump of brigade 0x139168
| type (address) |length | data addr | contents | rc

0| FILE (0x0012d918) | 2326 |0x0012da58 | [**unprintable**] | 1
1| EOS (0x0012daa8) |0 | 0x00000000 | | n/a
end of brigade

(gdb) detach

Debugging transient problems

What is transient debugging?

* Transient debugging is the art of correlating
unacceptable behaviors to specific application
and system components

« Several utilities can help with debugging
transient problems:

— Chaosreader
— Curl
— Dtrace

— Ethereal
— Firefox HTTP Live Headers

Curl

* Versatile command line utility that can
be used to debug web-based problems

 Curl contains several advanced options
to print protocol headers and
connection errors

* Invaluable utility for locating
misbehaving servers and applications

Curl example

$ curl -v --user-agent "CURL DEBUG (‘date’)" -H "X-foo: yikes"
http://daemons.net

About to connect() to daemons.net port 80

Trying 66.148.84.65... * connected

Connected to daemons.net (66.148.84.65) port 80
>GET/HTTP/1.1

User-Agent: CURL DEBUG (Sat Feb 4 23:02:36 EST 2006)
Host: daemons.net

Pragma: no-cache

Accept: */*

X-foo: yikes

<HTTP/1.1 200 OK

< Date: Sun, 05 Feb 2006 04:04:13 GMT

< Server: Apache

< Last-Modified: Sun, 20 Jun 2004 14:39:21 GMT
< ETag: "5¢186-912-c108d840"

< Accept-Ranges: bytes

< Content-Length: 2322

< Content-Type: text/html

DTrace

Dynamic tracing facility introduced in Solaris
10

Can dynamically instrument applications and
the Solaris kernel down to the instruction level

Utilizes 30k+ probes distributed throughout
the Solaris kernel

Designed to be used on production systems
No overhead when probes aren’t enabled

Dtrace script organization

» Dtrace scripts contain one or more
probes, an optional predicate, and an
optional action to perform (the default
action is trace()):

provider.module:function:name
| predicate /

{

action();

}

Dtrace example #1

* Viewing system calls by Apache
process

$ dtrace -n 'syscall:::entry
/execname == "httpd"/

{

@calls[probefunc] = count();

y

Dtrace example 1

£

.‘

* Determining WHO called writev

$ dtrace -n 'syscall::writev:entry
/ execname == "httpd" /

{

y

ustack();

Dtrace example #

* Tracing execution flow per request

#pragma D option flowindent
pid$target::ap_process_request:entry
{

self->trace = 1;

}

pid$target::ap_process_request:return
{
self->trace = 0;
}
pid$target:::entry,
pid$target:::return
/ self->trace /

{}

3

Dtrace example #4

* Tracing execution flow into the kernel

#pragma D option flowindent
pid$target::ap_read_request:entry
{

self->trace = 1;

}

pid$target::ap_read_request:return

{

self->trace = 0;
}
pid$target:::entry,
pid$target:::return,
fbt:::entry,
fbt:::return
/ self->trace /

{}

Dtrace example #5

« Watching Logical Apache I/O operations

syscall::write:entry
/ exechame == "httpd" /

{

printf("Apache wrote (%s) to fd %d (%s\n", probefunc, arg0,
fds[arg0].fi_pathname);

}

syscall::read:entry
/ exechame == "httpd" /

{

printf("Apache read (%s) from fd %d (%s)\n", probefunc, arg0,
fds[arg0].fi_pathname);

}

Dtrace example #

* Measuring write size

$ dtrace -n 'syscall::read:return
/ execname == "httpd" && errno == 0/

{

@distribution["Average read size"] = quantize(arg1);

y

6

Dtrace example #7

« Measuring request processing time

pid$target::ap_read_request:entry

{

self->ts = timestamp;
}
pid$target::ap_read_request:return
{

self->method = arg1 == 0 ? "Unknown" : copyinstr(*(uintptr_t *)copyin(arg1 +
68,4));
self->uuri = arg1 == 0 ? "Unknown" : copyinstr(*(uintptr_t *)copyin(arg1 +
200,4));
}

pid$target::ap_process_request:return

{

printf("Processed %s %s in %d microseconds\n", self->method, self->uuri,
(timestamp - self->ts) / 1000000);
self->uuri = 0: self->ts = 0:

Conclusion

* Debugging is cool!
* Debugging is great!
« Now it’s time for me to escape! :-)

Questions?

References

Apache: htip://apache.org

Chaosreader:
http://users.tpg.com.au/bdgcvb/chaosreader.html

Curl: http://curl.haxx.se/
Dtrace: http://opensolaris.org/os/community/dtrace/

Debugging Web Applications:
http://www.samag.com/articles/2006/0603/

Ethereal: http://www.ethereal.com/

mod_backtrace:
http://people.apache.org/~trawick/exception_hook.htm

Observing I/O Behavior with the DTraceToolkit:
http://www.samag.com/documents/s=9915/sam0512a/051

2a.htm

